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We propose a new algorithm for solving integer programming (IP) problems that is
based on ideas from algebraic geometry. The method provides a natural generalization

of the Farkas lemma for IP, leads to a way of performing sensitivity analysis, offers a
systematic enumeration of all feasible solutions, and gives structural information of the
feasible set of a given IP. We provide several examples that offer insights on the algorithm and
its properties.
(Integer Programming; Algebraic Geometry; Groebner Basis)

1. Introduction
In this paper we introduce a new approach for solving
integer programming problems (IPs). Our results are
inspired from the observation that we can view any
0–1 IP as a system of quadratic equalities. We apply
ideas from algebraic geometry to provide an algo-
rithm for the problem that has several implications.
Conti and Traverso (1991) introduced a very different
approach for solving IPs that was also based on ideas
from algebraic geometry. Nevertheless, unlike the
approach in Conti and Traverso (1991) (see also Tayur
et al. 1995, or Thomas 1995), our approach uses a
specific right-hand side b (like Thomas and Weisman-
tel 1997), and is directly motivated by 0–1 integer
programming problems. Our algorithm may be
viewed as a generalization of the Farkas lemma as
well as a way of performing sensitivity analysis for
IPs. Moreover, preliminary computational results in-
dicate that our algorithm shows promise for problems
that are either infeasible or have a small number of
feasible solutions.

To make our results more accessible to the reader
we will first focus on the 0–1 feasibility integer pro-
gramming problem. Later in the paper we will illus-
trate how to extend our results for solving 0–1 as well

as general integer optimization problems. Our formu-
lation of the 0–1 feasibility integer programming
problem is related to the work of Pitassi (1997), who
formulates problems in logic as systems of polynomial
equations, and considers the lengths of proofs of
infeasibility based on the Nullstellensatz. This last
idea was first suggested in a paper of Lovasz (1982).

Definition 1. Given an m � n matrix A, and an
m-vector b, the 0–1 feasibility integer programming prob-
lem is the problem of deciding whether there is an
n-vector x with 0–1 coordinates such that

Ax � b, x � �0, 1� n. (1)

This problem can be rewritten equivalently as the
following system of equations,

Ax � b, x j
2 � xj, j � 1, . . . , n.

The contributions of this paper are as follows:
1. We provide an algorithm for the 0–1 IP feasibility

problem that systematically enumerates all feasible
solutions or shows that none exists. The algorithm also
provides a way to count exactly the number of solu-
tions without the need to enumerate them.

2. We extend the algorithm for solving general IP
optimization problems.
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3. We show that the method leads to a way of
performing sensitivity analysis in IPs.

4. We establish that the algorithm leads to a strong
duality theory for IPs, in the sense that it provides a
certificate for infeasibility.

5. We address the reverse problem, i.e., given a set
of integer points in {0, 1} n we provide an underlying
IP.

The paper is structured as follows. In §2, we review
definitions and basic results from algebraic geometry
to make the paper self contained. In §3, we present our
algorithm for the 0–1 IP feasibility problem, and
illustrate several of its properties. In §4, we extend our
approach to the feasibility and optimization problems
of general IPs. In §5 we illustrate the application of our
algorithm to performing sensitivity analysis for IPs.
The last section contains some concluding remarks.

2. Preliminaries
To make the paper self contained, we review in this
section some basic definitions and results from an
introductory text on computational algebraic geome-
try by Cox et al. (1997). The interested reader may
consult this book for further details.

In this paper we work over an algebraically closed
field k, which is the field of complex numbers �. The
polynomial ring over this field is represented by
k[ x 1, . . . , x n].

Definition 2. Given polynomials f 1, . . . , f s

� k[ x 1, . . . , x n], the set V( f 1, . . . , f s) such that

V� f1, . . . , fs� :� ��a1, . . . , an� � k n

: fi�a1, . . . , an� � 0 � i�,

is called the affine variety defined by f 1, . . . , f s.
The notion of polynomial ideals is closely connected

to the notion of affine varieties.
Definition 3. A subset I of k[ x 1, . . . , x n], is an

ideal if
(i) 0 � I;
(ii) if f, g � I, then f � g � I;
(iii) if f � I, and h � k[ x 1, . . . , x n], then hf � I.
Remark. Given polynomials f 1, . . . , f s, we define

� f 1, . . . , f s	 as the set that consists of all polynomials
that are obtained by ¥ i�1

s h i f i, with h i � k[ x 1, . . . , x n].

It is not difficult to see that � f 1, . . . , f s	 is an ideal. We
call this “the ideal generated by f 1, . . . , f s.” Note that
all the ideals considered in this paper are polynomial
ideals.

Definition 4. Given a term order on k[ x 1, . . . , x n]
and a polynomial f in this ring, we define the leading
monomial of f to be the highest monomial in f with
respect to the term order.

We are now ready to introduce the notion of a
Groebner basis for a given term order.

Definition 5. A subset of polynomials Q :� {q1, . . . , qt}
of an ideal F is a Groebner basis of F, if it has the property
that all the leading monomials of F can be generated by
the leading monomials of the polynomials in Q.

The details of the following result can be found in
Cox et al. (1997).

Theorem A (Follows from Hilbert Basis Theo-
rem). For every polynomial ideal and every term order,
there is a Groebner basis that has a finite number of
elements.

Given an ideal F generated by polynomials f 1, . . . ,
f s and a term order, we can compute the Groebner
basis of F using Buchberger’s algorithm (see Cox et al.
1997, for further details).

We use I(V) to denote the ideal that contains all
polynomials that vanish on a given variety V
and V(I) to denote the variety V(r 1 , . . . , r s)
where R :� {r 1, . . . , r s}, is a Groebner basis of the
ideal I.

Lemma A. If f 1, . . . , f s � k[ x 1, . . . , x n], then
�f 1, . . . , f s	 � I(V( f 1, . . . , f s)), although equality need
not occur.

Definition 6. Given I :� � f 1, . . . , f s	 � k[ x 1, . . . ,
x n], the lth elimination ideal I l is defined as I l � I �

k[ x l�1, . . . , x n].
In the remainder of this paper we will use the

following results from Cox et al. (1997).

Theorem B (The Elimination Theorem). Let I �

k[ x 1, . . . , x n] be an ideal and let G be a Groebner basis of
I with respect to lex order where x 1 
 x 2 
 . . . 
 x n.
Then, for every 0 � l � n, the set
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Gl � G � k�xl�1, . . . , xn�

is a Groebner basis of the lth elimination ideal I l.

Theorem C (The Extension Theorem). Let I
� �q 1, . . . , q s	 � k[ x 1, . . . , x n] and let I 1 be the first
elimination ideal of I. For each 1 � i � s, we can write q i

in the form

qi � hi�x2, . . . , xn�x 1
Ni � terms in which

x1 has degree smaller than Ni,

where N i � 0 and h i � k[x 2, . . . , x n] is nonzero.
Suppose we have a partial solution (a 2, . . . , a n)
� V(I 1). If (a 2, . . . , a n) � V(h 1, . . . , h s), then there

exists a 1 � k such that (a 1, . . . , a n) � V(I).

Corollary D. Let V :� V(q 1, . . . , q s) � k n, and
assume that for some i, q i is of the form

qi � cx 1
N � terms in which

x1 has degree smaller than N,

where c � k is nonzero and N 
 0. If I 1 is the first

elimination ideal, then in k n
1,

�1�V� � V�I1�,

where � 1 is the projection on the last n 
 1 coordinates.

Definition 7. An ideal I is radical if f m � I for any
integer m � 1 implies that f � I.

Definition 8. Let I � k[ x 1, . . . , x n] be an ideal.
The radical of I, denoted �I, is the set { f : f m � I for
some integer m � 1}.

Theorem E. (Nullstellensatz). Let k be an alge-
braically closed field. If I is an ideal in k[ x 1, . . . , x n], then
I(V(I)) � �I.

3. An Algorithm for the 0–1
Feasibility IP

In the previous section we laid the foundation for
presenting an algorithm for solving the 0–1 feasibility
IP, Problem (1). We consider the following polynomi-
als in k[ x 1, . . . , x n]:

fi � �
j�1

n

aijxj � bi, i � 1, . . . , m,

gj � x j
2 � xj, j � 1, . . . , n.

We let Ṽ :� V( f 1, . . . , f m, g 1, . . . , g n) be the variety
they define.

Since k is the field of complex numbers, Ṽ is the
feasible set of the 0–1 IP with matrix A and right-hand
side b. (The data is assumed to be in �.) This is based
on the simple observation that either Ṽ is empty, or if
there is an element, it is actually in � (it is in fact
integral).

We consider the ideal J :� � f 1, . . . , f m, g 1, . . . , g n	.
The algorithm we propose enumerates all feasible 0–1
solutions, or detects that no feasible solution exists.

Algorithm A.
Input: Matrix A and vector b.
Output: All feasible solutions (a 1, . . . , a n) to Prob-
lem (1).

1. Find a Groebner basis G of J using lex order
x 1 
 x 2 
 . . . 
 x n. If G � {1}, then the 0–1 IP has no
feasible solutions. Exit.

2. If G � {1}: Consider for 1 � l � n 
 1, the sets
G l � G � k[ x l�1, . . . , x n]. Starting from l � n 
 1,
and working sequentially:

• Find a n in V(G n
1).
• Extend a n to (a n
1, a n) such that (a n
1, a n)

� V(G n
2).
• �

• Find a 2 such that (a 2, . . . , a n) � V(G 1).
• Find a 1 such that (a 1, . . . , a n) � V(G).

We next show that the algorithm correctly solves 0–1
feasibility IPs (Problem (1)).

Theorem 1. Algorithm A either provides all feasible
solutions for Problem (1), or provides a certificate of
infeasibility whenever the Groebner basis G � {1}.

Proof. Consider the elimination ideals J 1, . . . ,
J n
1, where J k � J � k[ x k�1, . . . , x n]. If we find the
Groebner basis G of J using lex order (via Buchberger’s
algorithm), then Theorem B implies that G k :� G �

k[ x k�1, . . . , x n] is a Groebner basis of J k, further
implying that V(G k) � V( J k). Observe that one of the
following two cases holds:
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(a) The Groebner basis G � {1}. Then the ideal J
coincides with k[ x 1, . . . , x n], indicating that V( J) is
empty, since we are working on an algebraically
closed field. Therefore, Ṽ is an empty set implying that
we have an infeasible integer program.

(b) The Groebner basis G � {1}. In this case, we
notice that G n
1 has elements x n 
 1 or x n or x n

2 
 x n

belonging to it. This follows from the observation that
J n
1 is a polynomial ideal in one variable, namely a
subset in k[ x n] and therefore, needs only one genera-
tor. We interpret this to mean that points 1 or 0 or both
0 and 1 are partial solutions respectively. That is, we
get an a n in V( J n
1). Subsequently we obtain a n
1 by
extending the partial solution a n to (a n
1, a n)
� V( J n
2). That is, we take a partial solution in V( J k)
and extend it to a partial solution in V( J k
1) and so on.
By Theorem C, this is always possible as the appro-
priate leading coefficients (starting from f i and g j) in
our setting are constants. Continuing in this way and
applying Theorem C, we can obtain a solution
(a 1, . . . , a n) in V( J).

We are interested, however, in a point of Ṽ. It is
easy to see that the projection � k of Ṽ to the last n 
 k
coordinates satisfies � k(Ṽ) � V(I k) (see Lemma 1,
page 120 of Cox, Little, and O’Shea 1997). We notice
that a repeated application of Corollary D indicates
that

�k�Ṽ� � V�Ik�,

and therefore, (a 2, . . . , a n) � V( J 1) obtained by the
Algorithm A is in fact in � 1(Ṽ). We can find a point in
Ṽ using any one of the f i. Thus, all solutions are found
by this procedure, and no infeasible ones are picked
up. �

Remarks.
1. It is important to observe that using different a n

from V( J n
1), we can find all solutions to the given 0–1
integer program.

2. For a given ideal the Groebner basis is not
typically unique. However, we may use the notion of
the reduced Groebner basis (see Cox et al. 1997), which is
unique for the ideal for a given term order. All our
results are reported using the reduced Groebner basis
for the lex order.

We next illustrate the use of Algorithm A. All

computations in this paper have been done using our
own implementation of Buchberger’s algorithm in
C�� on a personal computer.

Example 1. Consider the IP

x1 � 2x2 � 3x3 � 4x4 � 5x5 � 15x6 � 15,

xj � �0, 1� � j.

The ideal we consider is

J � �x1 � 2x2 � 3x3 � 4x4 � 5x5 � 15x6 � 15,

x 1
2 � x1, x 2

2 � x2, . . . , x 6
2 � x6	.

The sorted reduced Groebner basis of J with lex order
is

G � �x 6
2 � x6, x5 � x6 � 1, x4 � x6 � 1,

x3 � x6 � 1, x2 � x6 � 1, x1 � x6 � 1}.

Therefore, we have G 5 � { x 6
2 
 x 6}, indicating that a 6

� 1 and a 6 � 0 are both partial solutions. Starting
from a 6 � 1, we get a 1 � a 2 � . . . � a 5 � 0. Starting
from a 6 � 0, we get a 1 � . . . � a 5 � 1. Therefore, we
have two feasible solutions: (0, 0, 0, 0, 0, 1) and (1, 1, 1,
1, 1, 0).

An interesting feature of the Groebner basis, for
example, is the interpretation of the term x 5 � x 6 
 1.
This implies that in all solutions exactly one of x 5 and
x 6 is equal to 1. This example illustrates the structural
information that the Groebner basis contains regard-
ing a 0–1 IP.

The next example amplifies the observation that
Algorithm A captures logical interactions between
variables.

Example 2. Consider the IP

x1 � 3x2 � 2x3 � 2x4 � 4x5 � 4x6 � 4,

xj � �0, 1� � j.

The sorted reduced Groebner basis with lex order is

G � �x 6
2 � x6, x5x6, x 5

2 � x5, x4x6, x4x5, x 4
2 � x4,

x3 � x4, x2 � x4 � x5 � x6 � 1,

x1 � x4 � x5 � x6 � 1�.

The element x 3 
 x 4 implies that both variables
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should always have the same value in any feasible
solution. Other elements are interpreted accordingly.

3.1. On the Structure of the Reduced Groebner
Basis Obtained from Algorithm A

In this section, we outline some structural properties
of the reduced Groebner basis obtained from Algo-
rithm A. Property 1 follows from Exercise 7, p. 200, of
Cox et al. (1997).

Property 1. If the solution of Problem (1) is
unique, then all the reduced Groebner basis elements
are of the form x i 
 a i with a i � {0, 1}.

The following example illustrates Property 1.
Example 3. Consider the following 0–1 feasibility

integer programming problem.

x1 � x2 � x3 � 2,

x1 � x2 � 2,

x2 � x3 � 1,

xi � �0, 1�, i � 1, . . . , 3.

This problem has the unique feasible solution x 1 � x 2

� 1, x 3 � 0. Furthermore, Algorithm A yields this
solution through the sorted reduced Groebner basis G
� { x 3, x 2 
 1, x 1 
 1}.

Property 2. The polynomials in the reduced
Groebner basis with the lexicographic term order
x 1 
 . . . 
 x n can be partitioned in n sets S n, . . . , S 1

as follows:
1. Set S n contains only one polynomial, which is

either x n, x n 
 1 or x n
2 
 x n.

2. Set S n
1 contains polynomials in x n and x n
1.
3. Set S i, i � n 
 2, . . . , 1 contains polynomials in

x n, x n
1, . . . , x i.
This property follows from the fact that the underly-
ing term order is an elimination order. This “diago-
nalized structure” of the reduced Groebner basis—a
generalization of Gaussian elimination for the n � n
linear system of equations—is useful in enumerating
the feasible 0–1 solutions. Starting with S n, we assign
values for x n � 0 (if x n � S n), or x n � 1 (if x n 
 1
� S n), or x n � 0, 1 (if x n

2 
 x n � S n). Having chosen
x n, we backsolve for x n
1 using the polynomials in
S n
1, and proceed to assigning values to the other

variables recursively. The next example illustrates
Property 2.

Example 4. Consider the 0–1 feasibility IP:

x1 � 2x2 � 3x3 � 4x4 � 6x5 � 6, xj � �0, 1� � j.

The reduced Groebner basis for lex order is

G � �x 5
2 � x5, x4x5, x 4

2 � x4, x3 � x4 � x5 � 1,

x2 � x5 � 1, x1 � x4 � x5 � 1�.

The sets are as follows: S 5 � { x 5
2 
 x 5}, S 4 � { x 4x 5, x 4

2


 x 4}, S 3 � { x 3 � x 4 � x 5 
 1}, S 2 � { x 2 � x 5 
 1},
S 1 � { x 1 � x 4 � x 5 
 1}.

Algorithm A enumerates all 0–1 solutions:

�0, 0, 0, 0, 1�, �0, 1, 0, 1, 0�, �1, 1, 1, 0, 0�.

Property 3. Let x 1 
 x 2 
 . . . 
 x n be the lex
order. Polynomials in the reduced basis G under lex
order can be partitioned as follows:

1. Group B: Binomials of the type x j
2 
 x j, j � S

� {k, k � 1, . . . , n}, for some k, i.e., the
binomials correspond to variables that are lower
in the term order.

2. Group A: Square free polynomials. This group
can be further partitioned in two subgroups:
(a) Group A1: Polynomials that have a leading

term x i, i � S.
(b) Group A2: Polynomials that are square free

with a leading monomial term: x i1
x i2

. . . x ir
, i l

� S.
Since the number of points in V(G) is finite, we are

dealing with “zero dimensional” varieties and so we
have �A1� � �B� � n. In order to see why Property 3
holds we argue as follows. By minimality of the
reduced Groebner basis we cannot have x i

2 and x i as
leading terms. This justifies the partition to groups B
and A1 such that �A1� � �B� � n. Moreover, because
the Groebner basis is reduced, we cannot have a
monomial term x j in one of the polynomials in the
reduced Groebner basis, and x j appearing as a leading
term in another polynomial. Finally, the square free
polynomials with a leading monomial term:
x i1

x i2
. . . x ir

need to have i l � S, otherwise x i1
x i2

. . . x ir

� �x il
	 with x il

being the leading monomial term in a
polynomial in the Groebner basis.

The following example illustrates Property 3.
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Example 5. Consider the following 0–1 feasibility
IP

x1 � x2 � x3 � x5 � 2x6 � 2,

x2 � x4 � x7 � 1,

x3 � x4 � x8 � 1,

xi � �0, 1�, i � 1, . . . , 8.

The sorted reduced Groebner basis G for the term
order x 8 
 x 7 
 x 6 
 x 5 
 x 1 
 x 2 
 x 3 
 x 4 is

G � �x8 � x4 � x3 � 1, (A1)

x7 � x2 � x4 � 1, (A1)

x6 � x1x2 � x1x3 � x1 � x2x3 � x2 � x3 � 1, (A1)

x5 � 2x1x2 � 2x1x3 � x1 � 2x2x3 � x2 � x3, (A1)

x 1
2 � x1, (B)

x1x2x3, (A2)

x 2
2 � x2, (B)

x2x4, (A2)

x 3
2 � x3, (B)

x3x4, (A2)

x 4
2 � x4}. (B)

Based on this example one might be tempted to think
that terms in A2 are only monomials. However, this is
not true, since if we use the usual term order
x 1 
 . . . 
 x 8 in the above example we find that one
of the polynomials in the reduced Groebner basis is
x 6x 7 
 x 6x 8.

We can use Property 3 in order to enumerate all
feasible solutions more efficiently. We first enumerate
all 0–1 solutions implied by the binomials in the set B.
For a fixed set of values in the set B, we use the
equations in the set A1 to assign values for the
remaining variables. If any of the equations in A2 is
violated, we reject this solution; otherwise we accept
it.

3.2. The Number of 0–1 Solutions
We next show that the reduced Groebner basis pro-
vides exact information about the number of 0–1
feasible solutions to Problem (1). Let S be the feasible
set of the 0–1 integer program (1). Let I � I(S). Then
I is a radical ideal1 (see p. 173 of Cox et al. 1997). The
next theorem holds for any order, not only the lexico-
graphic one if the ideal is radical (see Proposition 8(ii),
Chapter 5, p. 232 of Cox et al. 1997).

Theorem 2. The number of solutions of Problem (1) is
equal to the cardinality of the set M of monomials that are
not multiples of the leading monomials of the polynomials
in the reduced Groebner basis.

Note that if G � {1}, then M � A, and thus the
number of feasible solutions is �M� � 0, i.e., the
problem is infeasible. The following example illus-
trates the use of Theorem 2.

Example 5 (Continued). The leading monomials
in the Groebner basis in Example 5 are:

x8, x7, x6, x5, x 1
2, x1x2x3, x 2

2, x2x4, x 3
2, x3x4, x 4

2.

The set of monomials that are no multiples of the
leading monomials is:

M � �1, x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x3�.

Since �M� � 9, Example 5 has exactly 9 solutions.
These solutions are:

�0, 0, 0, 1, 0, 1, 0, 0�, �1, 0, 0, 1, 1, 0, 0, 0�,

�0, 1, 1, 0, 0, 0, 0, 0�,

�1, 1, 0, 0, 0, 0, 0, 1�, �0, 1, 0, 0, 1, 0, 0, 1�,

�1, 0, 1, 0, 0, 0, 1, 0�,

�0, 0, 1, 0, 1, 0, 1, 0�, �1, 0, 0, 0, 1, 0, 1, 1�,

�0, 0, 0, 0, 0, 1, 1, 1�.

1 We can easily verify that indeed I(S) is an ideal. To prove that I(S)
is also radical, that is I � �I, pick an f � �I. (Note that I � �I
always.) Then, by definition, f m � 0 for some m, for all a � S. This
implies that f(a) � 0, for all a � S, indicating that f � I.
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3.3. An Interpretation of Algorithm A as Farkas
Lemma for 0–1 IPs

Farkas lemma, which is the central idea of duality in
linear programming, provides a certificate of infeasi-
bility for a linear programming problem. What is a
certificate of infeasibility of a 0–1 IP? An obvious (and
very inefficient) certificate is the enumeration of all
possible 2 n vectors. Nevertheless, Algorithm A pro-
vides a potential certificate in a more efficient way. If
the 0–1 IP is infeasible, then G � {1}. In other words,
the certificate is the computation of the Groebner
basis.

Example 6. Consider the following example:

2x1 � 2x2 � 4x3 � 6x4 � 11, xj � �0, 1�.

Clearly, this is an infeasible IP, as the left-hand side is
an even integer, while the right-hand side is an odd
one. In this case G � {1}.

3.4. Constructing an IP from a Given Set of Points
in {0, 1} n

To this point, this paper has addressed the problem of
finding the feasible points of a 0–1 feasibility integer
programming problem (Problem (1)). In this subsec-
tion, we will address the reverse problem. That is, we
will establish how to construct a 0–1 feasibility integer
programming problem for a given set of integer points
in {0, 1} n.

Theorem 3. Suppose we are given a set of points S in
{0, 1} n representing the feasible space of some 0–1 IP. We
can provide an underlying IP and construct a Groebner
basis of an ideal I such that V(I) � S.

Proof. Given a subset S of points in {0, 1} n we can
enumerate the points P i � ( p 1

i , . . . , p n
i ) in {0, 1} n, for

i � 1, . . . , m, that do not lie in the set S. The
following inequality describes a set of points in R n that
excludes only point P i,

�
j�1

n

�xj � p j
i� 2 � 1.

Therefore, we can describe the set S through the
following set of quadratic inequalities,

�
j�1

n

�xj � p j
i� 2 � 1, i � 1, . . . , m,

x j
2 � xj � 0, j � 1, . . . , n.

Nevertheless, the observation that the variables x j are
0 or 1, allows us to rewrite this as a set of linear
inequalities combined with separable, quadratic
equalities for each variable as follows:

�
j�1

n

�xj�1 � 2p j
i� � p j

i� � 1, i � 1, . . . , m,

x j
2 � xj � 0, j � 1, . . . , n.

Introducing a binary expression for the excess vari-
ables corresponding to each inequality yields the
following set of linear equalities with integer vari-
ables,

�
j�1

n

�xj�1 � 2p j
i� � p j

i� � �
k�0

logn
1

2 kxn�1��i
1�logn�k � 1,

i � 1, . . . , m,

x j
2 � xj � 0, � j.

The previous representation formulates the set of
points S in the form of Problem (1). For this new
representation we can apply Buchberger’s algorithm
to find a Groebner basis. �

4. Optimization of IPs
In this section, we will generalize our results of §3 for
solving general integer programming problems. In the
next subsection, we will illustrate how to solve 0–1
IPs.

4.1. Optimization of 0–1 IPs
We consider the optimization problem

minimize c�x,

subject to Ax � b,

x j
2 � xj, � j.
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The largest objective function value is Z̄ � ¥ j:c j �0 c j.
Let Z LP be the value of the LP relaxation. Clearly, Z LP
� Z IP � Z̄. This observation allows us to apply binary
search on Z IP and solve the optimization problem as
follows. We add the polynomial h :� ¥ j�1

n c jx j 
 C to
the generators of J, for specific values of C in the range
[Z LP, Z̄]. We thus need to apply Algorithm A at
most log(Z̄ 
 Z LP) times.

A more direct method is as follows. We work in
k[ x 1, . . . , x n, y]. Let

h :� y � �
j�1

n

cjxj

and we look at V̂ :� V( f 1, . . . , f m, g 1, . . . , g n, h).
Following the same approach as the one for feasibility,
with lex order x 1 
 x 2 
 . . . 
 x n 
 y, we notice that
the Groebner basis Ĝ of Ĵ :� �f 1, . . . , f m, g 1, . . . , g n, h	
is either {1} (indicating infeasibility) or we will have Ĝ
intersected with k[ y] which leads to a polynomial in y.
We interpret this polynomial in y as follows: Every
root of the polynomial is a feasible cost of the IP.
Therefore, we can find the minimum root, and work
upwards to get the associated x j values.

Example 7. Consider the IP

minimize x1 � 2x2 � 3x3,

subject to x1 � 2x2 � 2x3 � 3,

x j
2 � xj, j � 1, . . . , 3.

The reduced Groebner basis of

J � �y � x1 � 2x2 � 3x3, x 1
2 � x1,

2x1 � 4x2 � 4x3 � 6, x 2
2 � x2, x 3

2 � x3	

is

G � �12 � 7y � y 2, 3 � x3 � y, 
4 � x2 � y, 1 � x1�.

The two roots of the polynomial 12 
 7y � y 2 are y
� 3 and y � 4. Thus the minimum value is y � 3, and
the corresponding solution is (1, 1, 0).

We next illustrate that we can simplify the calcula-
tion of Algorithm A if we have partial information on
the optimal cost.

Example 8. Consider the IP

minimize x1 � 2x2 � 3x3 � 3x4,

subject to x1 � x2 � 2x3 � x4 � 3,

x j
2 � xj, j � 1, . . . , 4.

The reduced Groebner basis with lex order of J � �x 1

� 2x 2 � 3x 3 � 3x 4 
 y, 2x 1 � 2x 2 � 4x 3 � 2x 4 
 6,
x 1

2 
 x 1, x 2
2 
 x 2, x 3

2 
 x 3, x 4
2 
 x 4	 is

G � �120 � 74y � 15y 2 � y 3, 
20 � 2x4 � 9y � y 2,


6 � 6x3 � y � x3y, x3 � x 3
2,


23 � x2 � x3 � x4 � 10y � y 2,

32 � 2x1 � 2x3 � 11y � y 2�,

which suggests that all feasible ys are y � 4, 5, 6, i.e., the
roots of the first equation of the Groebner basis. If
however, we have additional information that 4 � y � 5,
we can add the polynomial (y 
 4)(y 
 5) and rerun
Algorithm A. The reduced Groebner basis is then:

G � �20 � 9y � y2, 
1 � x3, 
4 � x2 � y, 5 � x1 � y�.

A natural question is to compare the performance of
Algorithm A to branch and bound. Our next example
addresses this issue.

Example 9. We consider the class of integer pro-
gramming problems (with n odd):

minimize xn�1,

subject to 2x1 � 2x2 � · · · � 2xn � xn�1 � n,

xi � �0, 1�.

It is easy to show that any branch and bound algo-
rithm that uses linear programming relaxations to
compute lower bounds, and branches by setting a
fractional variable to either zero or one, will require
the enumeration of an exponential number of sub-
problems when n is odd (see Bertsimas and Tsitsiklis
1997). It is thus interesting to observe the performance
of Algorithm A. Applying Algorithm A to this prob-
lem we obtain relatively quickly that the first polyno-
mial in the reduced Groebner basis is x n�1 
 1,
suggesting that x n�1 � 1.
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4.2. Optimization of General IPs
An arbitrary IP, in which the variables are only restricted
to be nonnegative integers, can be reduced in a standard
way to the 0–1 case as follows: If xj � {0, 1, . . . , Uj} with
Uj known, then for each j, we write xj � ¥p�0

logUj 
1 2pxj
p,

with the auxiliary variables xj
p taking values either 0 or 1.

We then substitute the above expression for xj in the
objective function and the constraints. Alternatively, we
can include the polynomial

h � xj�xj � 1�· · ·�xj � Uj�

to the ideal J and apply Algorithm A. The next
example illustrates an application of this idea. Instead
of considering x j � {0, 1, 2}, we consider without loss
of generality the case x j � {
1, 0, 1}, i.e., x j

3 � x j.
Example 10. We consider the IP

2x1 � 2x2 � x3 � 1,

3x1 � x2 � 2x3 � 1,

xj � �
1, 0, 1�.

Then, we apply Algorithm A on the ideal J � �2x 1


 2x 2 � x 3 
 1, 3x 1 � x 2 � 2x 3 
 1, x 1
3 
 x 1, x 2

3 
 x 2,
x 3

3 
 x 3	. The reduced Groebner basis is

G � �x3 � 1, x2, x1 � 1�.

The general case of x j nonnegative integers can be
reduced to the bounded case as follows. Papadimi-
triou and Steiglitz (1982), prove that if the IP Ax � b,
x j � Z� has a solution, then it has a solution with x
� {0, 1, . . . , M} n, where M � n(ma max)

2m�3(1 � b max),
with a max � max�a ij�, and b max � max�b i�.

4.3. IPs with Inequality Constraints
In this subsection, we will illustrate how to solve IPs
with inequality constraints. The key idea in showing
this is to convert the given IP into an IP with linear
equality constraints and integer variables.

Consider the general IP problem

minimize c�x,

subject to a�ix � bi, i � 1, . . . , m,

xj integer, j � 1, . . . , n.

We assume that all data in the problem is integral. For
each inequality i � 1, . . . , m, we will introduce a non-
negative integer slack variable si. Nevertheless, we can
rewrite a binary expression of these variables as before.
This observation allows us to convert our problem into
an IP with linear equalities and integer variables.

The following example illustrates this.
Example 11. We consider the IP

x1 � x2 � x3 � 2,

x2 � x3 � x4 � 4,

xi � �0, 1�, i � 1, . . . , 4.

We introduce slack variables s1 and s2 for the first and
second constraint, respectively. Clearly, s1 � 2 and s2

� 4. Furthermore, we rewrite these variables as s1 � x5

� 2x6 and s2 � x7 � 2x8 � 4x9, with x5, . . . , x9 � {0, 1}.
Therefore, we rewrite the IP as

x1 � x2 � x3 � x5 � 2x6 � 2,

x2 � x3 � x4 � x7 � 2x8 � 4x9 � 4,

x i
2 � xi � 0, i � 1, . . . , 9.

We are now able to solve this problem using Algorithm
A, as we have shown in the previous subsections.

5. Sensitivity Analysis of IPs
Our results in this paper also allow us to perform
sensitivity analysis for integer programming problems.
That is, they allow us to address the problem of finding
the optimal objective function value as a function of one
of the right-hand side coefficients bi. To achieve this we
work in k[x1, . . . , xn, y, bi] with lex order x1 
 . . . 
 xn


 y 
 bi, and find the Groebner basis G. We find that
either (i) G � {1}, indicating that there is no value of bi for
which the problem is feasible, or (ii) G � k[bi] is a
polynomial in bi, and each of the roots of this polynomial
represents a value for which the problem has a feasible
solution. In this case, G � k[y, bi] are polynomials in y
and bi, and so we have an explicit representation of the
value function.

Example 12. Consider the IP
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minimize x1 � 2x2 � 3x3,

subject to 2x1 � 2x2 � 4x3 � b,

x j
2 � xj, j � 1, . . . , 3.

Suppose we are interested in finding the optimal
solution value as a function of b, when 4 � b � 6.

The reduced Groebner basis with lex order of

J � �x1 � 2x2 � 3x3 � y, 2x1 � 2x2 � 4x3 � b,

�b � 4��b � 5��b � 6�, x 1
2 � x1, x 2

2 � x2, x 3
2 � x3	

is

G � �24 � 10b � b 2, 18 � 3b � 6y � by,


14 � b � 9y � y 2, 
4 � b � 4x3 � bx3,

3 � 3x3 � y � x3y, 
x3 � x 3
2,


b � 2x2 � 2x3 � 2y, b � x1 � x3 � y�,

which implies that for b � 4, y � 3, the two solutions
are (0, 0, 1) and (1, 1, 0). For b � 5, there is no solution,
and for b � 6, the feasible y are roots of the equation

20 � 9y 
 y 2 � 0, i.e., y � 4 and y � 5.

6. Conclusions
In this paper we used ideas of algebraic geometry to
present a method for solving integer programming
problems. We started by presenting a method for solving
the 0–1 feasibility integer programming problem, which
we subsequently extended to solving general integer
optimization problems. For the feasibility problem, our
method provides a systematic enumeration of all feasible
solutions. Our results may be viewed as a natural
generalization of Farkas’ lemma to integer programming
and allow us to check whether a given problem is
infeasible. Our results also lead to a way of performing
sensitivity analysis. Finally, we also addressed the re-
verse problem, that is, how to provide an IP formulation
for a given set of integer points in {0, 1}n.

We have experimented with several integer program-
ming problems of up to 100 variables. We have used our
own implementation of Buchberger’s algorithm.

In preliminary computational work, we have ob-

served that Algorithm A is computationally faster,
when the problem is either infeasible or it has very few
solutions. In such situations, we have been able to
solve problems with 100 variables on a personal
computer. The following is such an example.

Example 13. Let n be an even number. Consider
the following 0–1 feasibility IP:

xi � xi�1 � 1, i � 1, . . . , n � 1,

x j
2 � xj, j � 1, . . . , n.

We have used n � 100. Algorithm A gives the
Groebner basis

G � �x n
2 � xn, x2k
1 � xn � 1, k � 1, . . . , n/2,

x2k � xn, k � 1, . . . , n/2 � 1}. 2

2 The authors would like to thank the two reviewers of the paper for many
insightful comments and suggestions that improved the paper. The first
author’s research was supported by NSF Grant DMI-9610486. The
second author’s research was supported by NSF Grant DMI-9634736.
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